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In this paper we study the existence and characterization of spaces which are
images of minimal-norm projections that are required to interpolate at given func-
tionals and satisfy additional shape-preserving requirements. We will call such
spaces optimal interpolating spaces preserving shape. This investigation leads to
concrete solutions in classical settings and, as examples, 6n will be determined to
be such spaces with regard to certain interpolation and shape-preserving requirements
on the projections. Restated, the theory of this paper gives rist to an n-dimensional
Hahn�Banach extension theorem, where the minimal-norm extension is required to
keep invariant a fixed cone. � 1999 Academic Press

1. INTRODUCTION AND CHARACTERIZATION OF EXISTENCE

In this paper we study the existence and characterization of spaces which
are images of minimal-norm projections that are required to interpolate at
given functionals and satisfy additional shape-preserving requirements. We
will call such spaces optimal interpolating spaces preserving shape. This
investigation leads to concrete solutions in classical settings and, as examples,
6n will be determined in Section 4 to be such spaces with regard to certain
interpolation and shape-preserving requirements on the projections. Restated,
the theory of this paper gives rise (see Sections 2 and 3) to an n-dimensional
Hahn�Banach extension theorem, where the extension is required to keep
invariant a fixed cone.
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Let X denote a Banach space and U an n-dimensional subspace of the
dual space X*. We will use the following notation: an n-tuple from X is to
be considered a column vector while an n-tuple from X* will be a row
vector. Elements of Rn will be row vectors. Denote by B the space of bounded
linear operators from X to X. Given P # B with ker(P)=U= , there exists
u� =(u1 , ..., un) # Un and v� =(v1 , ..., vn)T # Xn such that the representation
P=u� x v� =�n

i=1 ui}vi is valid, where Pf=�n
i=1 ( f, u i ) vi .

Definition 1.1. For a given n_n nonsingular matrix A, P # B is said
to be an A-action operator if P can be written as P=�n

i=1 ui�vi such that
((vi , uj) )=A; i.e., Pv� =Av� .

Note 1.1. There is an entire equivalence class of matrices associated
with a particular action. That is to say, if P=u� x v� is an A-action
operator, then P is also an MAM&1-action operator, for any nonsingular
matrix M, since P=u� M x M&1v� . In the following, it will frequently be
advantageous for us to rewrite an operator's representation, as above. To
this end, we will resist fixing a particular nonsingular matrix A and instead
simply refer to a given ``action'' and use A to denote a representative from
the equivalence class.

Let I be the identity operator on an n-dimensional subspace U=
[u1 , ..., un] of a Banach dual space X* and let P*=�n

i=1 vi�u i=v� x u� :
X* � U be linear extension of I to all of X* of minimal norm, keeping
invariant some fixed ``proper-shape'' cone S*/X* (i.e. P*S*/S*). Then
(see Theorem 3.2 below), without loss, for some k, the vectors vk+1 , ..., vn

are determined uniquely by the requirement P*S*/S* and P* is then
given by the formula (v� )k :=(v1 , ..., vk)=extremal(Mu� ) for some k_n
matrix M. Here ``extremal'' is defined by use of the n-dimensional sphere
7n=[b9 : &b9 } u� &X*=1]. For example (see Corollary 3.2 below), in the
classical case X=C(T ), T compact, we have the simple geometric descrip-
tion of (v� (t))k �* as a point on (7n)k , extremal to Mu� (t), \t # T.

In fact we begin our discussion in a more general setting where the
action of the operator on the image space is more general than that of the
identity operator. We can investigate existence questions in this more
general setting. Note of course that, if the action is not the identity action,
then the operators do not interpolate at all the ui (i.e., (Px, ui ){(x, u i) ,
i=1, ..., n).

Throughout our discussion, we will want a shape that is given by a sub-
set with particular properties, as specified by the following definition.

Definition 1.2. A shape on X is defined via a (non-empty subset
S*/X*: v # X has shape (in the sense of S*) provided (v, u) �0 \u # S*.
We let S denote the set of all elements with shape and we assume that S*
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is such that S contains (at least) n linearly independent elements. We will
often refer to S* as a shape cone. (By the term ``cone'' we mean, as usual,
a convex set, closed under nonnegative scalar multiplication.)

Notation. Let AU
S* denote the set of all shape-preserving A-action

operators P with kernel U= .

Theorem 1.1 (Characterization A). AU
S*{< if and only if

_v� =(v1 , ..., vn)T, vi # S, such that,

\v # S, *9 vAv� # S, where

v |U
=*9 vv� |U

, *9 v # Rn.

Proof. ( O ) P=u� x v� # AU
S* implies, for every v # S,

Pv=(v, u� ) v�

=*9 v (v� , u� ) v�

=*9 vAv� # S.

( o ) Choose u� # Un such that (v� , u� )=A. By use of the fact that
(v, u� )=*9 vA for all v # S, it follows that P=u� x v� # AU

S* . K

Corollary 1.1. Let U be an n-dimensional subspace of X* and let A be
an n_n (action) matrix. If

_v� =(v1 , ..., vn), vi # S, such that,

\v # S, (*9 vA) i�0, i=1, ..., n, where

v |U
=*9 vv� |U

, *9 v # Rn,

then AU
S*{<.

Proof. If (*9 vA) i�0, i=1, ..., n, then clearly (*9 vA) } v� # S, and the result
follows from Theorem 1.1. K

Notation. Let $t denote the functional which evaluates a function at the
point t and let $r

t denote the functional which evaluates the r th derivative
of a function at the point t.

Example 1.1. Let X=C[0, 1], let S* be the weak*-closure of the cone
generated by [$t , t # [0, 1]], and let U=[$0 , $1�2 , $1]/X*. Then S is
contained in the closure of the cone generated by [/[t] \t # [0, 1]].
Further consider the basis v� =((1&t)2, 2t(1&t), t2) of ``quadratics'' in X.
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Then for v=/[t] , we have v |U
=*9 v } v� |U

, whence, for v=/[0] , /[1�2] , /[1] ,
we have *9 v=(1, &1�2, 0), (0, 2, 0), (0, &1�2, 1), respectively, and *9 v=
(0, 0, 0), v=/[t] , t{0, 1�2, 1. (Note that /[t] itself is not in S but each v
which is in S is a linear algebraic (convex) combination of elements /[t] #
X**|[$t | t # [0, 1]]

.) Thus Corollary 1.1 will apply to v if it applies to /[t] for each
t # [0, 1]. Now let

1 1�4 0

A=\0 1�2 0+ .

0 1�4 1

Then *9 vA=(1, 0, 0), (0, 1, 0), (0, 0, 1), for v=/[0] , /[1�2] , /[1] , respec-
tively; i.e., all (*9 vA) i are always nonnegative on [0, 1]. Thus, by
Corollary 1.1, AU

S* is not empty and the operator P=�3
i=1 ui�vi , where

((vi , uj) )=A preserves positivity. (Note that P is the classical Bernstein
operator onto the quadratics.) Note also that if A=I, then (*9 vA) i are not
always non-negative on [0, 1], reflecting the well-known fact that there
does not exist a positivity-preserving projection from C[0, 1] onto the
``quadratics'' (see [3] for further results regarding the non-existence of
more general shape-preserving projections.)

Example 1.2. Let X=C[0, 1], let S*(r) be the cone generated by
[$r

t |C r[0, 1] : t # [0, 1]] in X* (or, alternatively, generated by all r th
forward differences), r=0, 1, 2, and let U=[$t1

, ..., $tn
], for some fixed 0=

t1<t2< } } } <tn=1. Then the operator P, providing the piecewise linear
and continuous spline Px interpolating x at the [ti ]n

i=1 , is a projection
preserving r-convexity of all the orders r=0, 1, 2 (corresponding to
positivity, monotonicity, and convexity, respectively). Furthermore, since P
is clearly of norm one, we see that the space of linear splines described
above is an optimal interpolating space preserving positivity, monotonicity,
and convexity.

Note 1.2. Note that S is always a cone and many subsets S*/X* may
give rise to the same S. It is, however, often useful to define S* ``as large
as possible'' so that S* and S are ``dual'' cones, each determining the other
(see Lemma 1.1 below). The following definitions accomplish this.

Definition 1.3. The cone S*/X* is said to be pointed if it contains no
lines.

Notation. Let B(X ) denote the unit ball of X and let 7(X ) denote the
unit sphere ([x: &x&=1]) of X.
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Definition 1.4. For the cone S*, let LS*=[0] _ [u # S* | u, &u #
7(X*) & S*] and let E=�u # LS *

ker(u).

Definition 1.5. Let S*/X* be a cone. The shape defined by S* is
said to be maximally defined by S* if both S* and S*|E

are weak*-closed
subsets of X* and E*, respectively.

Note 1.3. Throughout the following we will want all shapes to be maxi-
mally defined. Thus S* will always denote a cone that maximally defines
a shape.

Lemma 1.1. S and S* are ``dual '' cones in the sense that, if ( f, u)�0,
\f # S, then u # S*.

Proof. If S*=[0], then there is nothing to prove; thus we assume
S*{[0]. Suppose that ( f, u)�0 \f # S but u � S*.

We begin by considering the case in which S* pointed. If X is reflexive
we have an immediate contradiction, since S* being weakly closed and
convex can be ``separated'' from u by a functional f # X**=X such that
(w, f )=( f, w)�0 \w # S* and yet (u, f ) =( f, u)=&1 (i.e., f provides
a ``supporting hyperplane'' for S* separating S* from u); but such an f is
in S.

In the non-reflexive case the ``separating functional'' f in X** above is
not necessarily in X and therefore not necessarily in S and so the construc-
tion of a ``separating'' hyperplane must be modified as follows. Let
S1*=S* & B(X*) and let S0* denote the set of extreme points of S1* less 0.
(Note that S1* is the closed convex hull of S0* _ [0] by the Krein�Milman
theorem.) Let C=co(S0*), where the closure is with respect to the weak*
topology. Note that C is a convex, compact set, not containing the origin.
Consider first the case that u � &S* (of course we still suppose that
u � S*). Then the entire subspace [u] does not intersect C and thus from
the convexity and compactness of C, it follows that there exists an entire
closed hyperplane H containing [u] such that H & C=< (see [6]).
Considering X* with its weak*-topology, let t # (X*�H )* (t not identically
zero) and let q: X* � X*�H be the natural map. Then h=t b q is a (weak*)
continous linear functional (with kernel H ) on X* and thus h # X (a con-
tinuous linear functional on X* with its weak*-topology must be in X); via
scaling we may assume that minx # C (x, h) =1. Finally we `shift slightly'
the hyperplane so that it strictly separates C from [u]. Indeed, let g # X be
such that (u, g)=1. If g # C= then h&g strictly separates C and u; other-
wise let 1�c=maxx # C (x, g) whence, for every x # C, we have (x, h&cg)
�1&(x, cg) �0 and (u, h&cg)=(u, &cg)=&c<0. In particular we
have shown that if u � S* _ &S*, then u cannot be nonnegative against S.
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Finally, we consider the case 0{u # &S*. Since ( f, u) �0 \ f # S, we see
that u must vanish against S. Let u1 # S* be such that ( f, u1 ) >0 for some
f # S (whose existence is guaranteed by the fact that S*{[0]). Then the
line segment *u+(1&*)u1 , * # [0, 1] does not pass through the origin.
Note that every element on this line segment (except for u) is positive
against S. Thus since both S* and &S* are closed, there must exist either
a (non-zero) element of the line segment that belongs to neither S* nor
&S* (i.e., there exists an element � S* _ &S* that is nonnegative against
S)��a contradiction to the above; or there is an element on the line
segment belonging to S* & &S* and thus vanishing against f. However the
only such element is u. This would imply u # S*, which is again a contra-
diction. We conclude that, in all cases, if u � S* then u cannot be non-
negative against S.

In the case that S* is not pointed, we use arguments very similar to
those above but now applied to S*|E

. We first claim that S*|E is pointed.
Suppose this is not true. Then there exists distinct ,1 , ,2 # S* such that
(,1) |E

=w while (,2) |E
=&w with w{0. Note this implies that ker(,1+,2)

#E. We claim ,1+,2 does not belong to [LS* ], the weak* closure of the
linear span of LS* . [LS* ] is a closed subspace of the cone S*. Thus if
,1+,2 # [LS*] then &(,1+,2) # [LS*] & S*. Whence it would follow
that &,1 # S* (since S* is closed under addition) and we would have that
w=0, a contradiction. Thus ,1+,2 does not belong to [LS*]. But this
implies that there exists a closed hyperplane strictly separating ,1+,2 from
[LS*]; i.e., there exists f # E/X that does not vanish against ,1+,2 . This
contradiction implies that S*|E must be pointed.

In the extreme case that S*|E
=[0], we note that S* is a (weak*-closed)

subspace of X*, and that S is a subspace, when u = S. Thus if u � S* then,
as above, there exists f # (S*)=/X such that ( f, u)=&1, whence a
contradiction follows. Thus we consider the non-trivial (pointed) cone S*|E
and u |E

. An arguement similar to the one given to show S*|E pointed shows
that u � S*|E . And, arguing as in the case S* pointed, we see that there exists
f # E such that (x, f ) �0 for all x # S*|E and (u, f )<0. Since f # E/X, we
may conclude that u cannot be nonnegative against S. K

Lemma 1.2. Let P # B. Then PS/S � P*S*/S*.

Proof. The proof is an immediate consequence of the duality equation
(Pf, u) =( f, P*u) and Lemma 1.1. K

Lemma 1.3. Let k denote the maximum number of linearly independent
elements of U & S* (so 0�k�n). Let P=u� x v� =�n

i=1 ui�vi , where
[u1 , ..., un]=U such that ui # S* for i�k, and vi # X. Then a necessary
condition for P # AU

S* is vi # (S*)= for i>k.
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Proof. If P, as given above, belongs to AU
S* then, by Lemma 1.2,

P*, # U & S*=[u1 , ..., uk]. Thus it must be the case that (vi , ,)=0 for
i>k. K

Note 1.4. Lemma 1.3 indicates that the question of existence can be
considered as two cases: k=0 and k=n. Indeed if 0<k<n then we break
the problem into two parts. Setting U1=[u1 , ..., uk] and U2=[uk+1 , ..., un]
we study the existence of elements in AU1

S*
and AU2

S*
. In this paper, Subsec-

tion 1.1 will study the projection action in the case k=n and Section 4 will
use the k=0 case.

Assumption. We assume that S is total over U ; that is, we assume that
S | U

contains n independent elements.

1.1. The Projection Action

Let PU
S* denote the set of shape-preserving projections with kernel U= .

We will show that Corollary 1.1, in the case of projections, results in a
simple geometric characterization of PU

S* (recall that the action matrix for
a projection is the identity). This characterization will then lead us to a
result concerning uniqueness.

In this section we will assume that the n-dimensional subspace U has n
linearly independent elements with shape. Note that this implies that the
cone S | U

is pointed. Regarding the cone S as a subset of X** one often
finds S to possess the following two characteristics: the `corners' of S form
an independent set and the restriction of S to U is closed (in U*). The
following definitions summarize these properties.

Definition 1.6. Let S**/X** be the weak*-closure of the cone
S/X**. Let S1**=S** & B(X**) and let S0** denote the set of extreme
points of S1** less 0. We will also say that S** is generated by S0** or by
its ``edges'' E(S**)=�x # S 0

** [*x : *>0] and write S**=cone(S0**) or
S**=cone(E(S**)).

Definition 1.7. We will say that the cone S** is simplicial if S0**
consists of independent elements. Thus if S** has finite dimension m then
S** is simplicial is equivalent to |E(S**)|=m. We will say that S* is dual-
simplicial if S** is simplicial.

Definition 1.8. We will say that S* is dual-proper (with respect to U )
if S |U

is closed (in U*).

Theorem 1.2. Let S* be dual-simplicial and dual-proper (with respect to
U). Then PU

S*{< if and only if the cone S |U
is simplicial.
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Proof. ( o ) This direction follows immediately from Corollary 1.1.
( O ) We will show that |E(S |U

)|=n. Let P=u x v # PU
S* and note that

(Px) |U
=x |U

since P is a projection; and since PX is n-dimensional, it
follows that (Px) |U

=(Pw) |U
if and only if Px=Pw in X. Thus there is a

bijection between the n-dimensional cones PS and S |U
given by Px W x |U

.
This implies that |E(S |U

)|=|E(PS)| and we now show |E(PS)|=n. Since
S* is proper, it follows again by the Krein�Milman theorem that the com-
pact convex set S |U

& B(X |U
) is the closed convex hull of its extreme points,

and hence (via the identification of PS and S |U
) there exists an independent

subset [Px1 , ..., Pxn] such that each Pxi # E(PS). (Note that we make the
usual identification of a point on the edge with the edge itself.) We will now
show that it is impossible for there to be any other edges. Note that for
each i, Pxi # S (by Lemma 1.2) and as such may be written as a (possibly
infinite) nonnegative combination of elements of S0**; i.e., with N=U= & S0**
(note that here we make the usual identification X/X**), we have

Pxi=|
Si

x d+i+|
N

x d+i , (1)

where +i is a positive measure with supp(+i ) & t(N)=Si . Now taking P
of both sides of (1) we find that Pxi=�Si

Px d+i , since P is a projection.
However, since Pxi # E(PS), this is only possible if Px=Pxi for all x # S i .
Whence it follows that x # Si only if x |U

=(xi ) |U
and thus Si & Sj=<, i{j.

Now, suppose there exists Pxn+1 # E(PS) such that Pxn+1{Pxi , i=1, ..., n.
Then Pxn+1 has a representation as in (1), while the n-dimensionality of
PX implies the existence of constants ci , i=1, ..., n such that

|
Sn+1

x d+n+1+|
N

x d+n+1=Pxn+1=c1Px1+ } } } +cnPxn

=|
S1 _ } } } _ Sn

x d++|
N

x d+, (2)

where the (signed) measure +=�n
i=1 ci +i . However, Sn+1 and S1 _ } } } _ Sn

are disjoint and so (2) contradicts the independence of the set S0**. Thus
|E(PS)|=n. K

Definition 1.9. The shape S* is said to be strictly dual-proper (with
respect to U) if S=S** and distinct elements of S0** do not agree on U.

Theorem 1.3. Let S* be dual-simplicial and strictly dual-proper. If
PU

S*{< then PU
S*=[P].
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Proof. Let E=E(S |V
). From Theorem 1.2, we have |E |=n and E=

[x1 |U
, ..., xn |U

], where each x i |V
is an edge of S |U

. Since S |U
=cone((S0**) |U

),
it follows that E/(S0**) |U

, and thus each xi | U
# E extends uniquely to

xi # S0**. Then for P # PU
S* , we see from the proof of Theorem 1.2 that

Pxi=xi for i=1, ..., n. From here it follows that P is unique. K

2. CHARACTERIZATION OF MINIMALITY

Theorem 2.1 (Characterizing Admissible Perturbations). Let U be an
n-dimensional subspace of X*. Further, let S*/X* be a shape cone and U=
U1 �U2 , such that U1=U & S ==[u1 , ..., uk], where S/X is the cone of
all elements with shape. Let U2=[uk+1 , ..., un ] and let I be the n_n identity
matrix. Suppose that the criteria of Theorem 1.3 are met with respect to S*,
U2 , and I$, where I$ denotes the (n&k)_(n&k) identity matrix induced by
I restricted to U2 . Then the set Pk, n of all shape-preserving projections with
kernel U= is a linear manifold, i.e., Pk, n=[P: P=P0+2], where P0 is a
fixed such operator and 2 # D=span[u�$: $ # U= and u # U1].

Proof. With P1 as the unique shape-preserving I$-action operator
respect to U2 , we write P1=�n

i=n&k+1 ui �vi . Now [u1 , ..., uk]/S=, so
we can define P=P1+�n

i=n&k+1 ui�vi for any [v1 , ..., vk]/X such that
(vi , uj)=Aij for i, j=1, ..., n. Then the set of all such ``admissible'' P forms
the manifold P=[P: P=P0+2], where P0 is a fixed such operator and
2 # D=span[u�$: $ # U= and u # U1]. Thus P is a manifold of shape-
preserving projections with respect to U. The fact that P1 is unique implies
Pk, n=P. K

In order to determine minimal-norm operators of Pk, n , we will need the
following characterization theory for minimal-norm operators from [2]
tailored to our situation. We will make use of the form of the projections
in Pk, n that was established in Theorem 2.1.

Definition 2.1. If P is a linear operator from X into X, then (x, y) #
7(X**)_7(X*) will be called an extremal pair for P if (P**x, y) =
&P&, where P**: X** � X** is the second adjoint extension of P to X**
(7 denotes unit sphere).

Notation. Let E(P) be the set of all extremal pairs for P. To each
(x, y) # E(P) associate the rank one operator x�y from X* to X* given by
(x�y)(z)=(z, x) y for z # X*.
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Theorem 2.2 (Characterization of Minimal P in Pk, n). If Pk, n{<
then P has minimal norm in Pk, n if and only if the closed convex hull of
[x�y](x, y) # E(P) contains an operator carrying U1 into U.

Proof. Pick P0=�n
i=1 u i�vi # Pk, n . By Theorem 2.1, the problem of

finding a minimal-norm element from Pk, n is equivalent to best approximat-
ing, in the operator norm, the fixed operator P0 # Pk, k from the space of
operators D. Let K=B(X**)_B(X*) endowed with the product topology,
where B( }*) denotes the unit ball with its weak* topology. Associate with
any operator Q # B the bilinear form Q� # C(K) via Q� (x, y)=(Q**x, y) ,
and let D� =[2� : 2 # D]. Then, making use of standard duality theory for
C(K ), K compact (see e.g., [7, Theorem 1.1, p. 18 and Theorem 1.3,
p. 29]), we have that P� =P� 0&2� 0 is of minimal norm if and only if there
exists a finite, non-zero (total mass one) signed measure +̂ supported on
the critical set

C(P� )=[(x, y) # 7(X**)_7(X*): |P� (x, y)|=&P� &�]

such that sgn +̂[(x, y)]=sgn P� (x, y) and +̂ # D� =, i.e.,

0=|
C(P� )

2� d+̂ for all 2� # D� .

But now, since any Q� # [P� ] _ D� is a bilinear function, we can replace the
signed measure +̂, supported in C(P� ), by a positive measure + supported
on E(P)/C(P� ) by noting that

C(P� )=[(x, ei%y): (x, y) # E(P) and % # T],

where T=[0, 2?) in the complex case and T=[0, ?] in the real case, and
setting

+[(x, y)]=| +̂| [(x, ei%y) : % # T].

For then sgn +[(x, y)]=sgn P� (x, y)=1, for (x, y) # E(P) and

0=|
E(P)

2� d+ for all 2 # D,

since

|
C(P� )

2� d+̂=|
% # T
(x, y) # E(P)

2� (x, ei%y) d+̂(x, e i%y)

|
% # T
(x, y) # E(P)

e&i%2� (x, y) ei% d | +̂| (x, ei%y)=|
E(P)

2� d+.
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Hence,

0=|
E(P)

2� d+=|
E(P)

(2**x, y) d+(x, y)

=|
E(P)

(x, +)($, y) d+(x, y)

=�|E(P)
(x, u) y d+(x, y), $�

for all 2=u�$ ($ # U=, u # U1), where, for z # X*, �E(P) (x, z) y d+(x, y)
is the element w # X* defined by (s, w) =�E(P) (x, +)(s, y) d+(x, y) for all
s # X. P is minimal, therefore, if and only if �E(P) (x, u) y d+(x, y) #
(U=)==U, i.e., if and only if there exists an operator (from X* into X*)

EP=|
E(P)

x�y d+(x, y): U1 � U. K (3)

In the examples and discussion below it is helpful to introduce a fixed
vector u� =(u1 , ..., un) whose components form a basis for U while the
components of (u� )k :=(u1 , ..., uk) form a basis for U1 . Then the necessary
and sufficient condition (3) can be rewritten as a system of k equations

|
E(P)

(x, (u� )k) y d+(x, y)=Mu� for some k_n matrix M. (4)

3. GEOMETRY AND EQUATIONS

Notation. Denote the underlying real or complex field by F and intro-
duce the norm on Fn given by &b9 &=&b9 } u� &X . Let 7n denote the unit sphere
of this norm on Fn and let (7n)k denote the sphere in Fk obtained by
projecting 7n onto its first k coordinates. The following proposition
demonstrates a very useful geometric connection in Fn between the two
components of an extremal pair for any P # P.

The following proposition is proved in [2] (in dual form). We include
the proof for the sake of completeness.

Proposition 3.1 [2]. For any extremal pair (x, y) of P=�n
i=1 ui�vi ,

(v� , y)=&P&
: ([x, u� )&c� *

&: (x, u� ) &c� *&
, (5)
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where : is any positive scalar and c� * # Fn yields min &: (x, u� ) &c� & subject
to c� } (x, u� )=0.

Proof. Fix y # E(P) and let C=[c� # Fn : c� } (x, u� ) =0]. Then there
exists a positive : (=|(x, u� ) |2�&P&) and c� * # C such that (v� , y) =
: (x, u� )&c� *. Hence, 0=c� } (x, u� ) =(c� } u� , [ext((v� , y) } u� )]) =(c� } u� ,
ext(: (x, u� ) } v� &c� * } u� )) , for all c� # C, which implies that c� * } u� is a best
approximation to : (v� , y) } u� from [c� } u� : c� # C] with respect to the norm of
X*. Hence c� * yields the minimum of &: (x, u� )&c� &. Further, &P&=(v� , y)
} (x, u� ) = ( (x, : (x, u� ) &c� *) } u� ) = &(: (x, u� ) &c� *) } u� &X = &: (x, u� )
&c� *&, since y=ext((v� , y) } u� ). Finally, note that : can be replaced by any
other positive quantity by scaling simultaneously the numerator and
denominator in (5). K

Note 3.1. Geometrically, (5) says that (v� , y)�&P& is a point of intersec-
tion of 7n and its tangent plane perpendicular (in the ordinary Euclidean
sense) to the direction of (x, u� ).

Theorem 3.1 (Geometry of Solution). If P=�n
i=1 ui�vi is minimal

in Pk, n , then

( (v� )k , y)=&P& z� ( y), (6)

with z� ( y ) being a point of intersection of (7n)k and its tangent plane
perpendicular to (x, (u� )k) , where (x, (u� )k) is determined by (4).

Proof. Apply the note following Proposition 3.1 to formula (4). K

In many important cases, e.g., in the case X=C, formula (4) above
reduces to a relatively simple set of equations, from which emerges a
remarkably simple geometric solution (Corollary 3.2 below) to the problem
of optimal recovery preserving shape. This situation accounts for the
relative simplicity of the examples below.

Corollary 3.1 (Equations for Minimality). Let P have minimal norm
in Pk, n and suppose that E2(P)=[ y: (x, y) # E(P) & supp(+)] is an inde-
pendent set. Then, for each y # E2(P), let y0 # (span E2(P))* such that
( y, y0)=1 and (z, y0)=0 for all z{y in E2(P), and act on (4) with y0 to
get

(x, (u� )k) +[(x, y)]=M (u� , y0). (7)

Theorem 3.2. Under the hypotheses of Corollary 3.1, P=�n
i=1 ui �vi is

minimal implies

( (v� )k , y)=&P& z� ( y),
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with z� ( y ) being a point of intersection of (7n)k and its tangent plane
perpendicular to M (u� , y0).

Proof. Apply (7) to (5) and use Note 3.1. K

Corollary 3.2 (Geometric Interpretation for C ). Let X*=C(T)*#

U=[u� ]. Then P=�n
i=1 ui�vi is minimal in Pk, n implies

(v� (t))k=&P& z� (t), (8)

with z� (t) being a point of intersection of (7n)k and its tangent plane
perpendicular to Mu� (t) for some k_n matrix M. (See Fig. 1.)

Proof. We can take yt=$t and y0
t | V=/[t] in Theorem 3.2. See [1]. K

Theorem 3.3 (n-Dimensional Hahn�Banach Extension Preserving a
Cone). Let I be the identity operator on an n-dimensional subspace U=
[u1 , ..., un] of a Banach dual space X* and let P*=�n

i=1 vi�ui=v� x u� :
X* � U be a linear extension of I to all of X* of minimal norm, keeping
invariant some fixed ``proper-shape'' cone S*/X* (i.e., P*S*/S*). Then,
without loss, for some k, vk+1, ..., vn are determined uniquely by the require-
ment P*S*/S* and P* is then given by the formula (v� )k :=(v1 , ..., vk)=
extremal (Mu� ) for some k_n matrix M. Here ``extremal '' is defined by use
of the n-dimensional sphere 7=[b9 : &b9 } u� &X*=1]. E.g., in the classical case
X=C(T ), T compact, we have the simple geometric description of (v� (t))k�*
as a point on (7 )k , extremal to Mu� (t), \t # T, where *=&P&.

FIGURE 1
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Proof. The theorem is an immediate interpretation of the above theory
in conjunction with Theorem 1.1. K

4. IDENTIFYING 6n AS OPTIMAL INTERPOLATING SPACES
PRESERVING SHAPE

Theorem 4.1. Let (X, & }&)=(C1[0, 1], & }&), where &x&=max[&x&� ,
&x$&�]. Let U=[u1 , u2 , u3 ], where (u1 , u2 , u3 )=( 1

2 ($0+$1), $$0 , $$1),
let A=I, and let S* be a shape cone such that S=cone(t, t2) (the cone
generated by the functions t and t2); i.e., AU

S* is the set of all projections
from C1[0, 1] onto 3-dimensional subspaces containing t and t2, interpolat-
ing the derivatives at 0 and 1 and preserving the average of the values at 0
and 1. Then there is an operator of minimal norm (3�2) and with range space
62 , the subspace of all second-degree algebraic polynomials. This projection
has then the explicit form

P=( 1
2 ($0+$1)& 1

4 ($$0+$$1))�1+$$0� t+ 1
2 ($$1&$$0)�t2. (9)

Proof. We apply Theorem 2.2 as follows.
First S is clearly total and proper over U2=[$$0 , $$1] and U1=U & S==

[ 1
2 ($0+$1)& 1

4 ($$0+$$1)].
Next it is immediate that P is a projection such that PS/S. Now we

calculate that P has norm is 3�2 and determine two appropriate extremal
pairs. Since the space C 1[0, 1] is normed by &x&=max[&x&� , &x$&�], we
have

&P&= sup
x # B(X )

&Px&= sup
x # B(X )

max[&Px&� , &(Px)$&�].

But, for x # B(X ),

&(Px)$&�=&(1&t) x$(0)+tx$(1)&��1.

Thus, when calculating &P&, we can restrict our attention to &Px&� . Note
that

sup
x # 7(X )

|Px(1)|= sup
x # 7(X )

1
2 \x(1)+

x$(1)
2

+
x$(0)

2
+x(0)+=

3
2

.

It follows that supx # 7(X ) |Px(0)|= 3
2 as well. Finally, since

Px(t)=
x(0)

2
+

x(1)
2

&
x$(1)

4
&

x$(0)
4

+(x$(0)) t+\x$(1)&x$(0)
2 + t2,
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we have

|Px(t)|= 1
2 (x(0)+x(1)+ 1

2 (x$(1)(2t2&1)&x$(0)(2t2&4t+1))

� 1
2 (1+1+ 1

2 (1+1))= 3
2

and indeed &P&= 3
2 . We next exhibit two extremal pairs of P. As we will

see, the extremal pairs will be of the form (w, $0) and (z, $1), where w and
z are elements of 7(X**). Before constructing these pairs, let us briefly
consider elements in X**. Let wn be a sequence of functions in 7(X ) such
that the set

M={ f # X* } lim
n � �

(wn , f ) exists=
{[0]. M is a subspace of X*. Define on M the linear functional w: M � R by

( f, w) = lim
n � �

(wn , f ) .

By the Hahn�Banach extension theorem, extend w to all X*. Of course, we
don't know the representation of w off M.

With this construction in mind, consider the following family of second-
degree polynomials. For each positive integer n define the polynomial
�n(t)=�2

i=0 ci ti where c0=1 and

ci=(&1) i 1
i ! (2&i )!

ni&1

for i=1, 2. It is easy to check that, for all n, we have �n(0)=1,
�$n(0)=&1, �n(1�n)=1&(1�2n) and �$n(1�n)=&1+(1�n). We define now
the following sequence:

�n(t), t # _0,
1
n&

wn(t)={1&
1

2n
, t # _1

n
, 1&

1
n&

2 \1&
1
2n+&�n(1&t), t # _1&

1
n

, 1& .

Using the definition of �n(t), it is clear that [wn]/X. Furthermore, one
easily checks the following properties of [wn]:

&wn&=1, wn(0)=1, w$n(0)=&1, wn(1)=1&
1
n

, w$n(1)=&1.
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Note that then

n
2

t2&t+1, t # _0,
1
n&

wn(t)={1&
1

2n
, t # _1

n
, 1&

1
n &

&n
2

t2+(n&1) t&
n2&4n+2

2n
, t # _1&

1
n

, 1& .

Now note that the subspace M=[ f # X* | limn � � (wn , f ) exists] contains
all point evaluations and derivative point evaluations. Thus, as done above,
associate the sequence [wn] with w # X** and note that in fact w # 7(X**).
We claim that (w, $0) is an extremal pair for P. Using the definition of the
association between w and [wn ], we find

(P**w, $0) =� lim
n � �

( 1
2 ((wn , $0)+(wn , $1) )

&1
4 ((wn , $$1)+(wn , $$0 ) )) , $0�� lim

n � �
(wn , $$0) t, $0�

+� 1
2 lim

n � �
((wn , $$1 ) &(wn , $$0) ) t2, $0�

= lim
n � �

( 1
2 ((wn , $0) +(wn , $1) )& 1

4 ((wn , $$1)+(wn , $$0) ))

= 3
2 .

With similar motivation, define the sequence zn(t)=wn(1&t) in X. Thus
we have

&
n
2

t2+t+
n&1

n
, t # _0,

1
n&

zn(t)={1&
1

2n
, t # _1

n
, 1&

1
n&

n
2

t2+(1&n) t+
n
2

, t # _1&
1
n

, 1& .

Let z # 7(X**) be associated with [zn]. It is easy to see that (z, $1) is an
extremal pair for P. Now, referrring to Theorem 2.2, we will show that the
operator EP= 1

4 (w�$0)+ 3
4 (z�$1) takes U1 into U. Indeed, U1=[u],

where u= 1
2 ($0+$1)& 1

4 ($$0+$$1), whence (w, u) = 3
2 and (z, u) = 1

2 leads
to EP(u)= 3

8 ($0+$1)= 3
4u1 # U. We conclude that P is minimal by

Theorem 2.2. K
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Note 4.1. The above result can be interpreted as an application of
Theorem 2.1. Indeed, with S finite dimensional and U2=[$$0 , $$1&$$0], it
follows that S*, as defined above, is strictly dual-proper with respect to U2 .

Definition 4.1. x # C[0, 1] will be called exact provided �1
0 x(t) dt=

1
2 (x(0)+x(1)) (i.e.,the ``trapezoidal rule'' for approximating the integral
of x on [0, 1] is exact). P: C r[0, 1] � C r[0, 1] will be said to preserve
exactness provided (Px) (r) is exact whenever x(r) is exact.

Note 4.2. For u # X*, the shape one generated by [u, &u] determines
a subspace of elements in X with shape; i.e., S is the nullspace of S*. Exact-
ness in C r[0, 1], as defined above, can be interpreted as a shape generated
by (x, u) =�1

0 x (r)(t) dt& 1
2 (x(r)(0)+x (r)(1)).

Corollary 4.1. The projection in (9) is in fact minimal among the set
of all exactness-preserving projections from C1[0, 1] onto 3-dimensional
subspaces interpolating the derivatives at 0 and 1 and preserving the average
of the values at 0 and 1.

Proof. First note that x(t)=cos ?t # U= but x � S=ker(u) (see
Note 4.2). Thus U & S*=[0] and this is the k=0 case of Lemma 1.3. Thus
for any exactness preserving P=u� �v� , with v� =(v1 , ..., vn) # Xn, we must
have vi # (S*)= for all i ; note that this implies that all vi must have shape.
Now, for P in (9), we have

|
1

0
(Px)$ dt=Px(1)&Px(0)= 1

2 (x$(0)+x$(1))= 1
2 ((Px$ (0)+(Px)$ (1)),

i.e., (Px)$ is always exact, whence P automatically preserves shape (shape
in this context is exactness of the first derivative). Furthermore, let
,i # C[0, 1] such that P� =u1�,1+u2�,2+u3�,3 is a projection, where
u1= 1

2 ($0+$1)& 1
4 ($$0+$$1), u2=$$0 and u3=$$1 . As noted above, each , i

must have shape. Now the orthogonality conditions lead to ,$1(0)=
,$1(1)=0 and 1

2 (,1(0)+,1(1))=1, while ,$2(1)=0, ,$2(0)=1, ,$3(1)=1,
,$3(0)=0, and 1

2 (,2(0)+,2(1))& 1
4=0, 1

2 (,3(0)+,3(1))& 1
4=0. Using these

conditions together, with the fact that each ,i has shape, we find ,1(0)=1
and ,2(0)=,3(0)=0. Now since

P� (x)=,1(t)
(x(0)+x(1))

2
+x$(0) \,2(t)&

1
4

,1(t)+
+x$(1) \,3(t)&

1
4

,1(t)+ ,
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we have

&P� &� sup
x # 7(X )

|P� x(0)|�|,1(0)|+|,2(0)& 1
4,1(0)|+|,3(0)& 1

4 ,1(0)|=3�2.

We conclude that the projection (of norm 3�2) in (9) is in fact minimal
among all exactness-preserving projections with kernel U= and the conclu-
sion follows. K

Corollary 4.2. The projection in (9) is in fact minimal among the set
of all monotonicity-preserving projections preserving exactness from C1[0, 1]
onto 3-dimensional subspaces interpolating the derivatives at 0 and 1 and
preserving the average of the values at 0 and 1.

Proof. For P in (9), we have (Px)$ (t)=x$(0)(1&t)+x$(1) t, whence P
preserves monotonicity. K

The above results extend to all n�2 as follows.

Theorem 4.2. Let (X, & }&)=Cn&1[0, 1], & }&), where &x&=max[&x&� ,
&x$&� , ..., &x(n&1)&�]. Let U=[u1 , u2 , ..., un ], where (u1 , ..., un)=( 1

2 ($0+$1),
($k

1&$k
0)n&3

k=0 , $n&1
0 , $n&1

1 ), let A=I and let S* be a shape cone such that S=
cone(tn&1, tn) (the cone generated by the functions tn&1 and tn). I.e., AU

S* is
the set of all projections from Cn&1[0, 1] onto n+1-dimensional subspaces
containing tn&1 and tn, interpolating the (n&1)-st derivatives at 0 and 1,
interpolating the differences of kth derivatives at 0 and 1, k=0, ..., n&3, and
preserving the average of the values at 0 and 1. Then there is an operator of
minimal norm (3�2 if n�2 and 1 if n=1) and with range space 6n , the sub-
space of all n th degree algebraic polynomials. This projection has then the
explicit form

Pnx(t) :=(x(0)+x(1))�2+ :
n&3

k=0

(x(k)(1)&x(k)(0)) ek(t)

+x(n&1)(1) dn&2(t)+(&1)n+1 x (n&1)(0) dn&2(1&t), (10)

where

ek(t) :=Tek&1(t), k=1, 2, ..., and e0(t) :=t&1�2=: d&1(t)

and

dk(t) :=Tdk&1(t), k=1, 2, ..., and d0(t) :=t2�2&1�4,
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where

Tx(t) :=_|
t

0
&t |

1

0 & x(s) ds.

(Note that T provides the integral Ix(t) of x adjusted by a constant (c) of t
so that Ix(t)&ct vanishes at 0 and 1.)

Proof. The proof follows by a fairly straightforward generalization of
the proof of Theorem 4.1. (See [3] for an analogous discussion.) But, in
order to illustrate how to find the operators, i.e., how to construct them
geometrically via Theorem 3.2, consider the case n=3 as an illustration.
We obtain

P3x(t) :=x(1) t+x(0)(1&t)+x"(1)(1�6t3&1�6t)

+x"(0)(&1�6t3+1�2t2&1�3t)

as follows. First U=[u~ 1 , u~ 2 , u~ 3 , u~ 4 ], where (u~ 1 , u~ 2 , u~ 3 , u~ 4)=( 1
2 ($0+$1),

$1&$0 , $"0 , $"1), and S is generated by t2 and t3. Then U2=[$"0 , $"1] and
U1=U & S ==[u1 , u2 ], where (u1 , u2)=($0 , $1& 1

6 ($"1+2$"0)). Then (S4)2

=[(b1 , b2) : &b1u1+b2u2 &X*=1]. But &b1$0+b2($1& 1
6 ($"1+2$"0))&X*=

|b1+ 1
2b2 |=1 yields a diamond-shaped sphere with corners at (0, 2) and

(1, 0). From this it follows from Theorem 3.2 where y=$$t that, ( (v� )2 , y)
=(v� )$2 (t)=*(0, 2), for some constant *. We conclude (v� )2 (t)=(c1 , c2 , t),
for some constants c1 , c2 . K

Corollary 4.3. The projection in (10) is in fact minimal among the set
of all exactness-preserving projections from Cn&1[0, 1] onto n+1-dimen-
sional subspaces interpolating the (n+1)st derivatives at 0 and 1, interpolating
the differences of kth derivatives at 0 and 1, k=0, ..., n&3, and preserving
the average of the values at 0 and 1.

Proof. The proof follows by a direct generalization of the proof of
Corollary 4.1. K

Corollary 4.4. The projection in (10) is in fact minimal among the set
of all (n&1)-convexity-preserving projections preserving exactness from
Cn&1[0, 1] onto n+1-dimensional subspaces interpolating the (n&1) st
derivatives at 0 and 1, interpolating the differences of kth derivatives at 0 and 1,
k=0, ..., n&3, and preserving the average of the values at 0 and 1.

Proof. The proof follows by a direct generalization of the proof of
Corrolary 4.2. K

372 CHALMERS, LEVIATAN, AND PROPHET



Theorem 4.3. Let (X, & }&)=(Cn&1[0, 1], & }&), where &x&=max[ |x(0)|,
|x$(0)|, ..., |x(n&2)(0)|, &x(n&1)&�]. Let U=[u1 , u2 , ..., un], where (uk=$k

0 ,
k=0, ..., n, let A=I, and let S*=[$ (n&1)

t ]t # [0, 1] (thus S is the cone of all
(n&+1)-convex functions). I.e., AU

S* is the set of all (n&1)-convexity-preserv-
ing projections from Cn&1[0, 1] onto n+1-dimensional subspaces interpolating
the first (n&1) derivatives at 0 and the (n&1)-th derivative at 1. Then there
is an operator of minimal norm (1) with range space 6n , the subspace of all
nth degree algebraic polynomials. This projection has then the explicit form

P= :
n&1

k=0

$k
0

k!
� tk+

$n&1
1 &$n&1

0

(n&1)!
� tn.

Proof. It is immediate that P is a projection with norm 1 with respect
to the given norm and that it preserves (n&1)-convexity ((Px)(n&1) (t)=
x(n&1)(0) t+x(n&1)(1)(1&t)). K
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